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Abstract

We approach the problem of antenna selection in single-cell uplink
massive MIMO using two different techniques. The first one consists
in solving a convex relaxation of the problem using standard convex
optimization tools. The second technique solves the problem using a
greedy approach. The main advantages of the greedy approach lies
in its wider scope, in that, unlike the first approach, it can be applied
irrespective of the considered performance criterion. In the case where
we don’t have perfect channel knowledge, We extend both approaches
to perform blind antenna selection that is only based on the channel
statistics.

1. System Description

1.1 Downlink Model
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Figure 1: System model of an uplink MU-MIMO system
composed of a BS equipped with n antennas and serving
m single-antenna users.
The received signal vector at the BS is given by

y =
√
ρHx + e. (1)

The random channel H exhibits the one-sided Kronecker
model given by

H = R
1
2W, (2)

where W is a matrix with i.i.d, CN (0, 1) entries.
At the output of the zero-forcing receiver (ZF), the estimated
signal is given by

x̂ =
1
√
ρ

(
HHH

)−1
HHy (3)

MSE = E
[
‖x̂− x‖2

]
=

1

ρ
tr

[(
WHRW

)−1]
.

(4)

2. Antenna Selection

2.1 CSI-aware Antenna Selection
Let

MSE (s) = tr

[(
HH diag (s)H

)−1]
. (5)

Then, the selection problem is formulated as follows

minimize
s

MSE (s)

s.t. 1T s = k

si ∈ {0, 1}, i = 1, · · · , n.
(6)

2.1.1 Antenna Selection via Convex Optimization

It is mainly based in relaxing the boolean constraints in (6)

s0 = argmin
s

MSE (s)

s.t. 1T s = k

0 ≤ si ≤ 1, i = 1, · · · , n.
(7)

2.1.2 Greedy Approach-based Antenna Selection

0: Initialize S = randsample (n, k)
0: Compute MSE∗ = f (H,S)
1: for i = 1 to # iterations do
1: S = {1, · · · , n}\S
1: j ← 1
2: while j ≤ n− k do
2: p← S [j]
2: I ← S
2: table← zeros (k, 1)
3: for l = 1→ k do
3: I [l]← p
3: table [l]← f (H, I)
3: I ← S
4: end for
5: if min (table) <MSE∗ then
5: MSE∗← min (table)
5: S [arg min (table)]← p
6: end if
7: end while
8: end for

Algorithm 1: Greedy Approach for Antenna Selection

2.2 Blind Antenna Selection
Assumption 1 We assume that n, m and k grow simulta-
neously large while
1. nm → c ∈ (1,∞)

2. 0 < lim inf kn < lim sup kn < 1.

3. lim inf km > 1.

Assumption 2 The correlation matrix R satisfies
1. supn ‖R‖ <∞
2. infn 1

n trR > 0.

Lemma 1 [1] Let Assumptions 1 and 2 hold true. Let δ be
the unique solution to the following equation

δ = m
(
tr
[
Rdiag(s) (In + δRdiag(s))−1

])−1
(8)

Define MSE(s) as
MSE(s) = δ

Then, MSE(s) satisfies

MSE(s)−MSE(s)
a.s.−−−−→
n→∞

0.

MSE(s) only depends on the channel statistics R.
Theorem 1 1. The function

MSE : Rn+→ R+

s 7→MSE(s)

is convex in Rn+.
2.

∂MSE (s)

∂si
=

δ
[
R

1
2 (I + δR diag (s))−2R

1
2

]
i,i

tr
[
R diag (s) (I + δR diag (s))−2

]. (9)

Corollary 1 Convex optimization techniques can be applied
to solve problems with an objective given by MSE(s).
As a matter of fact, the blind antenna selection problem can
be formulated as follows

ŝblind =argmin
s

MSE (s)

s.t. 1T s = k

si ∈ {0, 1}, i = 1, · · · , n.
(10)

Similarly, (10) can be solved using both heuristics: the con-
vex relaxation and the greedy approach.

3. Numerical Results and Discussion

m = 30 users, n = 100 antennas and ρ = 20 dB.
We consider the correlation model given by

Ri,j = exp
[
−0.05.d2 (i− j)2

]
, 1 ≤ i, j ≤ n. (11)

3.1 Complexity

Algorithm Complexity
Convex Optimization(Channel-aware) N ×O

(
n3
)

Convex Optimization(Blind) O
(
n3
)

Greedy(Channel-aware) K ×N ×O
(
n2
)

Greedy(Blind) K ×O
(
n2
)

Table 1: Computational complexity of the different pro-
posed algorithms.

3.2 MSE Performance
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Figure 2: Average MSE achieved by the proposed selec-
tion techniques versus k for different values of the anten-
nas’ separation d.
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Figure 3: Average MSE achieved by the proposed selection
techniques versus the antennas’ separation d with k = 50.

Comments

•When the correlation between antennas is low (d = 4),
the proposed blind algorithms are not that advantageous
as compared to the random selection algorithm.
•However, with the impact of correlation becoming more

important (d ↓), the gain of blind approaches over the
random selection approach increases.
• Blind algorithms perform antenna selection at the pace

of the variation of the large scale statistics. A high re-
duction in the computational complexity is thus achieved
compared to channel-aware algorithms.
• From a practical point of view, blind selection algorithms

are more suitable since they consider practical issues
such as antenna synchronization and adaptation.

4. Conclusion

In this work, we showed that using tools from random ma-
trix theory, it is possible to asymptotically approximate the
MSE. As such, perfect knowledge of the channel matrix is
not needed and only statistics are required to perform se-
lection. We proposed two techniques: the first is based on
a greedy approach and the second is based on a convex re-
laxation heuristic. Numerical results showed that the blind
techniques have a comparable performance to techniques
that require full knowledge of the channel matrix, especially
at high correlation.
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